Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712030

ABSTRACT

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.

2.
Am J Rhinol Allergy ; 37(6): 692-704, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37584357

ABSTRACT

BACKGROUND: Epigenetics studies mechanisms such as DNA methylation, histone modifications, non-coding RNAs, and alternative polyadenylation that can modify gene activity without changing the underlying DNA nucleotide base-pair structure. Because these changes are reversible, they have potential in developing novel therapeutics. Currently, seven pharmaceutical agents targeting epigenetic changes are FDA approved and commercially available for treatment of certain cancers. However, studies investigating epigenetics in chronic rhinosinusitis (CRS) have not been undertaken previously in the United States. OBJECTIVES: The goal of this study was to investigate sinonasal DNA methylation patterns in CRS versus controls, to discern environmentally-induced epigenetic changes impacting CRS subjects. METHODS AND RESULTS: Ethmoidal samples from CRS and inferior turbinate mucosal tissue samples from controls without CRS were studied. DNA methylation was studied by Reduced Representation Bisulfite Sequencing. RADMeth® biostatistical package was used to identify differentially methylated regions (DMRs) between CRS and controls. Ingenuity Pathway analysis of DMRs was performed to identify top upstream regulators and canonical pathways. Ninety-three samples from 64 CRS subjects (36 CRSwNP; 28 CRSsNP) and 29 controls were studied. CRS and control samples differed in 13 662 CpGs sites and 1381 DMRs. Top upstream regulators identified included: 1. CRS versus controls: TGFB1, TNF, TP53, DGCR8, and beta-estradiol. 2. CRSwNP versus controls: TGFB1, CTNNB1, lipopolysaccharide, ID2, and TCF7L2. 3. CRSsNP versus controls: MYOD1, acetone, ID2, ST8SIA4, and LEPR. CONCLUSIONS: Differential patterns of methylation were identified between controls and CRS, CRSwNP, and CRSsNP. Epigenetic, environmentally-induced changes related to novel, inflammatory, immunologic, and remodeling pathways appear to affect epithelial integrity, cell proliferation, homeostasis, vascular permeability, and other yet uncharacterized pathways and genes.


Subject(s)
MicroRNAs , Nasal Polyps , Rhinitis , Sinusitis , Humans , RNA-Binding Proteins/genetics , Epigenesis, Genetic , Chronic Disease , Nasal Polyps/metabolism
4.
J Crohns Colitis ; 17(11): 1847-1857, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37280154

ABSTRACT

BACKGROUND: The development of Crohn's disease [CD] involves immune cell signalling pathways regulated by epigenetic modifications. Aberrant DNA methylation has been identified in peripheral blood and bulk intestinal tissue from CD patients. However, the DNA methylome of disease-associated intestinal CD4+ lymphocytes has not been evaluated. MATERIALS AND METHODS: Genome-wide DNA methylation sequencing was performed from terminal ileum CD4+ cells from 21 CD patients and 12 age- and sex-matched controls. Data were analysed for differentially methylated CpGs [DMCs] and methylated regions [DMRs]. Integration was performed with RNA-sequencing data to evaluate the functional impact of DNA methylation changes on gene expression. DMRs were overlapped with regions of differentially open chromatin [by ATAC-seq] and CCCTC-binding factor [CTCF] binding sites [by ChIP-seq] between peripherally derived Th17 and Treg cells. RESULTS: CD4+ cells in CD patients had significantly increased DNA methylation compared to those from the controls. A total of 119 051 DMCs and 8113 DMRs were detected. While hypermethylated genes were mostly related to cell metabolism and homeostasis, hypomethylated genes were significantly enriched within the Th17 signalling pathway. The differentially enriched ATAC regions in Th17 cells [compared to Tregs] were hypomethylated in CD patients, suggesting heightened Th17 activity. There was significant overlap between hypomethylated DNA regions and CTCF-associated binding sites. CONCLUSIONS: The methylome of CD patients shows an overall dominant hypermethylation yet hypomethylation is more concentrated in proinflammatory pathways, including Th17 differentiation. Hypomethylation of Th17-related genes associated with areas of open chromatin and CTCF binding sites constitutes a hallmark of CD-associated intestinal CD4+ cells.


Subject(s)
Crohn Disease , DNA Methylation , Humans , Crohn Disease/genetics , Crohn Disease/metabolism , Th17 Cells , CD4-Positive T-Lymphocytes/metabolism , Chromatin/metabolism
5.
Parkinsonism Relat Disord ; 83: 22-30, 2021 02.
Article in English | MEDLINE | ID: mdl-33454605

ABSTRACT

INTRODUCTION: Genome-wide association studies (GWAS) have confirmed the leucine-rich repeat kinase 2 (LRRK2) gene as a susceptibility locus for idiopathic Parkinson's disease (PD) in Caucasians. Though the rs1491942 and rs76904798 variants have shown the strongest associations, the causal variant(s) remains unresolved. Therefore, the aim of this study was to identify variants that may be driving the LRRK2 GWAS signal by sequencing the entire LRRK2 gene in Caucasian PD patients and controls. METHODS: A discovery series (287 PD patients, 294 controls) and replication series (362 PD patients, 168 controls) were included. The entire LRRK2 gene as well as 10 Kb upstream/downstream was sequenced. Candidate potential causal variants were considered to be those that (a) were in at least weak linkage disequilibrium with the two GWAS-nominated variants (rs1491942 and rs76904798), and (b) displayed an association odds ratio (OR) that is stronger than the two GWAS variants. RESULTS: Thirty-four candidate variants (all intronic/intergenic) that may drive the LRRK2 PD GWAS signal were identified in the discovery series. However, examination of the replication series for these variants did not reveal any with a consistently stronger OR than both PD GWAS variants. Evaluation of public databases to determine which candidate variants are most likely to have a direct functional effect on LRRK2 expression was inconclusive. CONCLUSION: Though our findings provide novel insights into the LRRK2 GWAS association, a clear causal variant was not identified. The identified candidate variants can form the basis for future experiments and functional studies that can more definitively assess causal LRRK2 variants.


Subject(s)
Genome-Wide Association Study , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , White People/genetics , Adult , Aged , Aged, 80 and over , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Middle Aged , Sequence Analysis, DNA
6.
Cardiovasc Drugs Ther ; 35(3): 549-559, 2021 06.
Article in English | MEDLINE | ID: mdl-32623598

ABSTRACT

PURPOSE: Describe CYP2C19 sequencing results in the largest series of clopidogrel-treated cases with stent thrombosis (ST), the closest clinical phenotype to clopidogrel resistance. Evaluate the impact of CYP2C19 genetic variation detected by next-generation sequencing (NGS) with comprehensive annotation and functional studies. METHODS: Seventy ST cases on clopidogrel identified from the PLATO trial (n = 58) and Mayo Clinic biorepository (n = 12) were matched 1:1 with controls for age, race, sex, diabetes mellitus, presentation, and stent type. NGS was performed to cover the entire CYP2C19 gene. Assessment of exonic variants involved measuring in vitro protein expression levels. Intronic variants were evaluated for potential splicing motif variations. RESULTS: Poor metabolizers (n = 4) and rare CYP2C19*8, CYP2C19*15, and CYP2C19*11 alleles were identified only in ST cases. CYP2C19*17 heterozygote carriers were observed more frequently in cases (n = 29) than controls (n = 18). Functional studies of CYP2C19 exonic variants (n = 11) revealed 3 cases and only 1 control carrying a deleterious variant as determined by in vitro protein expression studies. Greater intronic variation unique to ST cases (n = 169) compared with controls (n = 84) was observed with predictions revealing 13 allele candidates that may lead to a potential disruption of splicing and a loss-of-function effect of CYP2C19 in ST cases. CONCLUSION: NGS detected CYP2C19 poor metabolizers and paradoxically greater number of so-called rapid metabolizers in ST cases. Rare deleterious exonic variation occurs in 4%, and potentially disruptive intronic alleles occur in 16% of ST cases. Additional studies are required to evaluate the role of these variants in platelet aggregation and clopidogrel metabolism.


Subject(s)
Clopidogrel/pharmacokinetics , Cytochrome P-450 CYP2C19/genetics , Drug Resistance/genetics , Platelet Aggregation Inhibitors/pharmacokinetics , Thrombosis/prevention & control , Aged , Alleles , Clopidogrel/administration & dosage , Exome/genetics , Female , Humans , Introns , Male , Middle Aged , Platelet Aggregation Inhibitors/administration & dosage , Stents
8.
Nature ; 586(7827): 80-86, 2020 10.
Article in English | MEDLINE | ID: mdl-32717741

ABSTRACT

Tandem DNA repeats vary in the size and sequence of each unit (motif). When expanded, these tandem DNA repeats have been associated with more than 40 monogenic disorders1. Their involvement in disorders with complex genetics is largely unknown, as is the extent of their heterogeneity. Here we investigated the genome-wide characteristics of tandem repeats that had motifs with a length of 2-20 base pairs in 17,231 genomes of families containing individuals with autism spectrum disorder (ASD)2,3 and population control individuals4. We found extensive polymorphism in the size and sequence of motifs. Many of the tandem repeat loci that we detected correlated with cytogenetic fragile sites. At 2,588 loci, gene-associated expansions of tandem repeats that were rare among population control individuals were significantly more prevalent among individuals with ASD than their siblings without ASD, particularly in exons and near splice junctions, and in genes related to the development of the nervous system and cardiovascular system or muscle. Rare tandem repeat expansions had a prevalence of 23.3% in children with ASD compared with 20.7% in children without ASD, which suggests that tandem repeat expansions make a collective contribution to the risk of ASD of 2.6%. These rare tandem repeat expansions included previously undescribed ASD-linked expansions in DMPK and FXN, which are associated with neuromuscular conditions, and in previously unknown loci such as FGF14 and CACNB1. Rare tandem repeat expansions were associated with lower IQ and adaptive ability. Our results show that tandem DNA repeat expansions contribute strongly to the genetic aetiology and phenotypic complexity of ASD.


Subject(s)
Autism Spectrum Disorder/genetics , DNA Repeat Expansion/genetics , Genome, Human/genetics , Genomics , Tandem Repeat Sequences/genetics , Female , Fibroblast Growth Factors/genetics , Genetic Predisposition to Disease , Humans , Intelligence/genetics , Iron-Binding Proteins/genetics , Male , Myotonin-Protein Kinase/genetics , Nucleotide Motifs , Polymorphism, Genetic , Frataxin
9.
Acta Neurochir (Wien) ; 162(8): 1891-1897, 2020 08.
Article in English | MEDLINE | ID: mdl-32529330

ABSTRACT

BACKGROUND: Neurofibromatosis type 2 (NF2) is a genetic disorder characterized by mutations of the NF2 tumor suppressor gene that predisposes patients to develop multiple tumors in the peripheral and central nervous system. The most common neoplasms associated with the disease are schwannomas and meningiomas. Both have been shown to contain abnormalities in chromosome 22 and the NF2 gene, suggesting a genetic component to their pathogenesis. Perineuriomas are rare benign tumors arising from the perineural cells. They are commonly classified as intraneural and soft tissue perineuriomas. Several studies have reported mutations in genes on chromosome 22 in both types of perineuriomas, and there are reports of soft tissue perineuriomas associated with NF2 gene mutations. Despite this, perineuriomas are not considered as part of the NF2 constellation of tumors. METHOD: The electronic medical records were searched for patients with a radiologic or pathologic diagnosis of intraneural perineurioma. Patients with clinical signs and genetic testing consistent with a diagnosis of NF2 were further evaluated. RESULTS: Of 112 patients meeting inclusion criteria, there were two cases of intraneural perineurioma in patients with NF2 treated at our institution (1.8%). We include a third patient treated at another facility for whom we performed a virtual consultation. CONCLUSIONS: The rarity of both NF2 and perineuriomas could explain the rarity of perineuriomas in the setting of NF2. Furthermore, there is divergent intraneural and soft tissue perineurioma somatic mutation pathogenesis, and there may be cytogenetic overlap between perineuriomas and multiple tumor syndromes. Our observed occurrence of intraneural perineurioma in the setting of NF2 in several patients provides further evidence of a potential link between the NF2 gene and the development of intraneural perineurioma.


Subject(s)
Nerve Sheath Neoplasms/complications , Neurofibromatosis 2/epidemiology , Humans , Neurofibromatosis 2/complications
10.
Kidney Int ; 97(2): 370-382, 2020 02.
Article in English | MEDLINE | ID: mdl-31874800

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is an inherited, progressive nephropathy accounting for 4-10% of end stage renal disease worldwide. PKD1 and PKD2 are the most common disease loci, but even accounting for other genetic causes, about 7% of families remain unresolved. Typically, these unsolved cases have relatively mild kidney disease and often have a negative family history. Mosaicism, due to de novo mutation in the early embryo, has rarely been identified by conventional genetic analysis of ADPKD families. Here we screened for mosaicism by employing two next generation sequencing screens, specific analysis of PKD1 and PKD2 employing long-range polymerase chain reaction, or targeted capture of cystogenes. We characterized mosaicism in 20 ADPKD families; the pathogenic variant was transmitted to the next generation in five families and sporadic in 15. The mosaic pathogenic variant was newly discovered by next generation sequencing in 13 families, and these methods precisely quantified the level of mosaicism in all. All of the mosaic cases had PKD1 mutations, 14 were deletions or insertions, and 16 occurred in females. Analysis of kidney size and function showed the mosaic cases had milder disease than a control PKD1 population, but only a few had clearly asymmetric disease. Thus, in a typical ADPKD population, readily detectable mosaicism by next generation sequencing accounts for about 1% of cases, and about 10% of genetically unresolved cases with an uncertain family history. Hence, identification of mosaicism is important to fully characterize ADPKD populations and provides informed prognostic information.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Female , High-Throughput Nucleotide Sequencing , Humans , Mosaicism , Mutation , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics
11.
BMC Bioinformatics ; 20(1): 722, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31847808

ABSTRACT

Following publication of the original article [1], the author explained that Table 2 is displayed incorrectly. The correct Table 2 is given below. The original article has been corrected.

12.
BMC Bioinformatics ; 20(1): 557, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31703611

ABSTRACT

BACKGROUND: Use of the Genome Analysis Toolkit (GATK) continues to be the standard practice in genomic variant calling in both research and the clinic. Recently the toolkit has been rapidly evolving. Significant computational performance improvements have been introduced in GATK3.8 through collaboration with Intel in 2017. The first release of GATK4 in early 2018 revealed rewrites in the code base, as the stepping stone toward a Spark implementation. As the software continues to be a moving target for optimal deployment in highly productive environments, we present a detailed analysis of these improvements, to help the community stay abreast with changes in performance. RESULTS: We re-evaluated multiple options, such as threading, parallel garbage collection, I/O options and data-level parallelization. Additionally, we considered the trade-offs of using GATK3.8 and GATK4. We found optimized parameter values that reduce the time of executing the best practices variant calling procedure by 29.3% for GATK3.8 and 16.9% for GATK4. Further speedups can be accomplished by splitting data for parallel analysis, resulting in run time of only a few hours on whole human genome sequenced to the depth of 20X, for both versions of GATK. Nonetheless, GATK4 is already much more cost-effective than GATK3.8. Thanks to significant rewrites of the algorithms, the same analysis can be run largely in a single-threaded fashion, allowing users to process multiple samples on the same CPU. CONCLUSIONS: In time-sensitive situations, when a patient has a critical or rapidly developing condition, it is useful to minimize the time to process a single sample. In such cases we recommend using GATK3.8 by splitting the sample into chunks and computing across multiple nodes. The resultant walltime will be nnn.4 hours at the cost of $41.60 on 4 c5.18xlarge instances of Amazon Cloud. For cost-effectiveness of routine analyses or for large population studies, it is useful to maximize the number of samples processed per unit time. Thus we recommend GATK4, running multiple samples on one node. The total walltime will be ∼34.1 hours on 40 samples, with 1.18 samples processed per hour at the cost of $2.60 per sample on c5.18xlarge instance of Amazon Cloud.


Subject(s)
Genomics/methods , Software , Algorithms , Chromosomes, Human/genetics , Genome, Human , Haplotypes/genetics , High-Throughput Nucleotide Sequencing , Humans
13.
Clin Transl Gastroenterol ; 10(10): e00087, 2019 10.
Article in English | MEDLINE | ID: mdl-31609742

ABSTRACT

INTRODUCTION: The etiology of acute liver failure (ALF) remains an important prognostic factor. The Acute Liver Failure Study Group recently reported that 150 of 2,718 adult patients with ALF (5.5%) had an indeterminate etiology. Our aim was to use whole exome sequencing to identify genetic variants associated with phenotypic, biochemical, and histologic features among patients with indeterminate ALF. METHODS: This effort has defined a cohort of well-pedigreed patients with indeterminate ALF; DNA samples extracted from whole blood samples were obtained from 26 respective patients with indeterminate ALF. These samples were kept at the Acute Liver Failure Study Group repository at the NIDDK, Bethesda. Whole exome sequencing and bioinformatics analysis were performed at the Mayo Clinic Center of Individualized Medicine in Rochester, MN. RESULTS: Of the 26 patients, 8 survived spontaneously, 6 died, and 12 underwent a liver transplantation; all those transplanted were alive at 21 days after enrollment in the study. Twenty-two of the 26 patients presented as ALF. We found 12 variants associated with 11 genes. The most common variant was rs4940595 in the SERPINB11 gene which was found in 23 of the 26 patients. This variant had a stop codon; no reports of disorders have been associated with this variant. The next most commonly found variant was rs1135840 in the CYP2D6 gene; this mutation is a missense_variant and has been reported to be associated with hepatotoxicity of antituberculous therapy. None of our patients were receiving this therapy. We also found a significant asymmetric distribution of rs1800754 of the CYP2D7 gene and rs1135840 of the CYP2D6 gene between patients who survived spontaneously (75%) and those who died or underwent liver transplantation (30.5% and 25%, respectively). DISCUSSION: We found 12 variants of 11 genes significantly associated with ALF among adults with indeterminate etiology. We also found a significant asymmetric distribution of 2 variants belonging to the CYP2D7 and CYP2D6 genes, respectively, between those who survived spontaneously and those who died or underwent liver transplantation. The 2 most common variants, rs4940595 and rs1135840, of the SERPINB11 and CYP2D6 genes, respectively, found in our patients with ALF have been described as potentially important in the adaptive response combating the emergence of infectious diseases and associated with hepatotoxicity of antituberculous therapy, respectively. Our findings need to be expanded to include more patients with indeterminate ALF as well as viral, drug toxicity, and autoimmune etiologies to determine whether our findings are associated with the specific etiology, indeterminate, or with the overall ALF syndrome itself.


Subject(s)
Genetic Predisposition to Disease , Liver Failure, Acute/genetics , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , Computational Biology , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 Enzyme System/genetics , DNA Mutational Analysis , Female , Humans , Liver/pathology , Liver Failure, Acute/blood , Liver Failure, Acute/mortality , Liver Failure, Acute/surgery , Male , Middle Aged , Mutation, Missense , Pilot Projects , Polymorphism, Single Nucleotide , Prognosis , Serpins/genetics , Exome Sequencing , Young Adult
14.
Front Genet ; 10: 736, 2019.
Article in English | MEDLINE | ID: mdl-31481971

ABSTRACT

As reliable, efficient genome sequencing becomes ubiquitous, the need for similarly reliable and efficient variant calling becomes increasingly important. The Genome Analysis Toolkit (GATK), maintained by the Broad Institute, is currently the widely accepted standard for variant calling software. However, alternative solutions may provide faster variant calling without sacrificing accuracy. One such alternative is Sentieon DNASeq, a toolkit analogous to GATK but built on a highly optimized backend. We conducted an independent evaluation of the DNASeq single-sample variant calling pipeline in comparison to that of GATK. Our results support the near-identical accuracy of the two software packages, showcase optimal scalability and great speed from Sentieon, and describe computational performance considerations for the deployment of DNASeq.

15.
Epigenetics ; 14(9): 927-937, 2019 09.
Article in English | MEDLINE | ID: mdl-31148524

ABSTRACT

Sensory neurons of the peripheral nervous system are critical in health and disease. Sensory neurons derived from induced pluripotent stem (iPS) cells are now being used increasingly for in vitro models of neuropathy, pain, and neurotoxicity. DNA methylation is critical for neurodevelopment and has been implicated in many neuronal diseases, but has not been examined in iPS-derived sensory neurons. In order to better characterize the iPS-derived sensory neuron model, we have undertaken a genome-wide DNA methylation study on the cells from human iPS to iPS-derived sensory neurons during differentiation through reduced representation and bisulfite sequencing. We report decreasing DNA methylation with iPS-derived sensory neuronal differentiation that is reflected in increasing numbers and proportions of hypomethylated individual CpGs and regions, as well as lowered DNMT3b expression. Furthermore, genes with changes in DNA methylation near their TSS suggest key pathways that may be involved in iPS-derived sensory neuronal differentiation. These findings provide insights into sensory neuronal differentiation and can be used for further in vitro modelling of disease states.


Subject(s)
DNA Methylation , Induced Pluripotent Stem Cells/cytology , Sensory Receptor Cells/cytology , Whole Genome Sequencing/methods , Aged , Cell Differentiation , Cells, Cultured , CpG Islands , DNA (Cytosine-5-)-Methyltransferases/genetics , Down-Regulation , Epigenomics/methods , Female , Humans , Induced Pluripotent Stem Cells/chemistry , Phenotype , Sensory Receptor Cells/chemistry , Young Adult , DNA Methyltransferase 3B
16.
PLoS One ; 14(4): e0214588, 2019.
Article in English | MEDLINE | ID: mdl-30958860

ABSTRACT

Prostate cancer (PrCa) is highly heritable; 284 variants have been identified to date that are associated with increased prostate cancer risk, yet few genes contributing to its development are known. Expression quantitative trait loci (eQTL) studies link variants with affected genes, helping to determine how these variants might regulate gene expression and may influence prostate cancer risk. In the current study, we performed eQTL analysis on 471 normal prostate epithelium samples and 249 PrCa-risk variants in 196 risk loci, utilizing RNA sequencing transcriptome data based on ENSEMBL gene definition and genome-wide variant data. We identified a total of 213 genes associated with known PrCa-risk variants, including 141 protein-coding genes, 16 lncRNAs, and 56 other non-coding RNA species with differential expression. Compared to our previous analysis, where RefSeq was used for gene annotation, we identified an additional 130 expressed genes associated with known PrCa-risk variants. We detected an eQTL signal for more than half (n = 102, 52%) of the 196 loci tested; 52 (51%) of which were a Group 1 signal, indicating high linkage disequilibrium (LD) between the peak eQTL variant and the PrCa-risk variant (r2>0.5) and may help explain how risk variants influence the development of prostate cancer.


Subject(s)
Genetic Predisposition to Disease , Linkage Disequilibrium , Prostatic Neoplasms/diagnosis , Quantitative Trait Loci , Genetic Variation , Genome-Wide Association Study , Genotype , Humans , Male , Polymorphism, Single Nucleotide , Prostate/pathology , Prostatic Neoplasms/genetics , Quality Control , Risk Factors , Sequence Analysis, RNA , Transcriptome
17.
Hepatol Commun ; 2(12): 1493-1512, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30556038

ABSTRACT

With the epidemic of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common pediatric liver disease. The influence of a perinatal obesity-inducing diet (OID) on the development and progression of NAFLD in offspring is important but incompletely studied. Hence, we fed breeding pairs of C57BL/6J mice during gestation and lactation (perinatally) either chow or an OID rich in fat, fructose, and cholesterol (FFC). The offspring were weaned to either chow or an FFC diet, generating four groups: perinatal (p)Chow-Chow, pChow-FFC, pFFC-Chow, and pFFC-FFC. Mice were sacrificed at 10 weeks of age. We examined the whole-liver transcriptome by RNA sequencing (RNA-seq) and whole-liver genome methylation by reduced representation bisulfite sequencing (RRBS). Our results indicated that the pFFC-FFC mice had a significant increase in hepatic steatosis, injury, inflammation, and fibrosis, as assessed histologically and biochemically. We identified 189 genes that were differentially expressed and methylated in the pFFC-FFC mice versus the pChow-FFC mice. Gene set enrichment analysis identified hepatic fibrosis/hepatic stellate cell activation as the top canonical pathway, suggesting that the differential DNA methylation events in the mice exposed to the FFC diet perinatally were associated with a profibrogenic transcriptome. To verify that this finding was consistent with perinatal nutritional reprogramming of the methylome, we exposed pFFC-Chow mice to an FFC diet in adulthood. These mice developed significant hepatic steatosis, injury, inflammation, and more importantly fibrosis when compared to the appropriate controls. Conclusion: Perinatal exposure to an OID primes the immature liver for an accentuated fibrosing nonalcoholic steatohepatitis (NASH) phenotype, likely through nutritional reprogramming of the offspring methylome. These data have potential clinical implications for monitoring children of obese mothers and risk stratification of children with NAFLD.

18.
Am J Surg Pathol ; 42(12): 1708-1714, 2018 12.
Article in English | MEDLINE | ID: mdl-30303818

ABSTRACT

Perineuriomas are rare nerve sheath tumors, divided into intraneural and extraneural (soft tissue) types. Intraneural perineuriomas frequently contain TRAF7 mutations, and rarely, chr22q12 deletions. While chr22q losses can occur in soft tissue perineuriomas, comprehensive high-resolution molecular profiling has not been reported in these tumors and TRAF7 status is unknown. We used whole-exome sequencing and OncoScan single nucleotide polymorphism (SNP) array to evaluate 14 soft tissue perineuriomas. Thirteen cases showed 2 or more chromosomal abnormalities, composed primarily of large deletions. Recurrent chr22q deletions, containing the NF2 locus (n=6) and the previously unreported finding of chr17q deletions, with the NF1 locus (n=4) were frequent events and were mutually exclusive in all but1 case. In addition, 5 cases had varying chr2 deletions; and 4 cases had chr6 deletions. A chr10 deletion (previously reported in the sclerosing variant of soft tissue perineurioma) was observed in one case and another case had chr7 chromothripsis as the sole chromosomal abnormality. No TRAF7 mutations or alterations were identified in any case and no other evaluated gene (MAF<0.0001) had recurrent, deleterious mutations in >2 cases. The molecular genetic profiles showed no association with patient sex, age, tumoral histology or anatomic site. OncoScan SNP array analysis was performed on 10 cases and showed high concordance with the whole exome data, validating the large-scale deletions, duplications, and chr7 chromothripsis findings. In soft tissue perineuriomas, recurrent 22q12 deletions (with NF2) and 17q11 deletions (with NF1) appear to be mutually exclusive events, and alterations in NF1 or NF2 likely contribute to perineurioma pathogenesis, similar to other nerve sheath tumors. Moreover, the lack of TRAF7 mutations in soft tissue perineuriomas indicates divergent pathogenetic mechanisms from those of intraneural perineuriomas.


Subject(s)
Biomarkers, Tumor/genetics , Chromosome Deletion , Chromothripsis , Nerve Sheath Neoplasms/genetics , Point Mutation , Polymorphism, Single Nucleotide , Soft Tissue Neoplasms/genetics , Adult , Aged, 80 and over , Child , DNA Mutational Analysis/methods , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Nerve Sheath Neoplasms/pathology , Neurofibromin 1/genetics , Neurofibromin 2 , Oligonucleotide Array Sequence Analysis , Phenotype , Soft Tissue Neoplasms/pathology , Transcriptome , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Exome Sequencing , Young Adult
19.
Blood ; 132(13): 1386-1398, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30093402

ABSTRACT

Anaplastic large cell lymphomas (ALCLs) are CD30-positive T-cell non-Hodgkin lymphomas broadly segregated into ALK-positive and ALK-negative types. Although ALK-positive ALCLs consistently bear rearrangements of the ALK tyrosine kinase gene, ALK-negative ALCLs are clinically and genetically heterogeneous. About 30% of ALK-negative ALCLs have rearrangements of DUSP22 and have excellent long-term outcomes with standard therapy. To better understand this group of tumors, we evaluated their molecular signature using gene expression profiling. DUSP22-rearranged ALCLs belonged to a distinct subset of ALCLs that lacked expression of genes associated with JAK-STAT3 signaling, a pathway contributing to growth in the majority of ALCLs. Reverse-phase protein array and immunohistochemical studies confirmed the lack of activated STAT3 in DUSP22-rearranged ALCLs. DUSP22-rearranged ALCLs also overexpressed immunogenic cancer-testis antigen (CTA) genes and showed marked DNA hypomethylation by reduced representation bisulfate sequencing and DNA methylation arrays. Pharmacologic DNA demethylation in ALCL cells recapitulated the overexpression of CTAs and other DUSP22 signature genes. In addition, DUSP22-rearranged ALCLs minimally expressed PD-L1 compared with other ALCLs, but showed high expression of the costimulatory gene CD58 and HLA class II. Taken together, these findings indicate that DUSP22 rearrangements define a molecularly distinct subgroup of ALCLs, and that immunogenic cues related to antigenicity, costimulatory molecule expression, and inactivity of the PD-1/PD-L1 immune checkpoint likely contribute to their favorable prognosis. More aggressive ALCLs might be pharmacologically reprogrammed to a DUSP22-like immunogenic molecular signature through the use of demethylating agents and/or immune checkpoint inhibitors.


Subject(s)
DNA Methylation , Dual-Specificity Phosphatases/genetics , Gene Expression Regulation, Neoplastic , Gene Rearrangement , Lymphoma, Large-Cell, Anaplastic/genetics , Mitogen-Activated Protein Kinase Phosphatases/genetics , Antigens, Neoplasm/genetics , Dual-Specificity Phosphatases/immunology , Female , Humans , Lymphoma, Large-Cell, Anaplastic/diagnosis , Lymphoma, Large-Cell, Anaplastic/immunology , Lymphoma, Large-Cell, Anaplastic/pathology , Male , Middle Aged , Mitogen-Activated Protein Kinase Phosphatases/immunology , Phosphorylation , Prognosis , STAT3 Transcription Factor/analysis , Transcriptome , Tumor Escape
20.
BMC Bioinformatics ; 19(1): 271, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30016933

ABSTRACT

BACKGROUND: Transfer of genetic material from microbes or viruses into the host genome is known as horizontal gene transfer (HGT). The integration of viruses into the human genome is associated with multiple cancers, and these can now be detected using next-generation sequencing methods such as whole genome sequencing and RNA-sequencing. RESULTS: We designed a novel computational workflow, HGT-ID, to identify the integration of viruses into the human genome using the sequencing data. The HGT-ID workflow primarily follows a four-step procedure: i) pre-processing of unaligned reads, ii) virus detection using subtraction approach, iii) identification of virus integration site using discordant and soft-clipped reads and iv) HGT candidates prioritization through a scoring function. Annotation and visualization of the events, as well as primer design for experimental validation, are also provided in the final report. We evaluated the tool performance with the well-understood cervical cancer samples. The HGT-ID workflow accurately detected known human papillomavirus (HPV) integration sites with high sensitivity and specificity compared to previous HGT methods. We applied HGT-ID to The Cancer Genome Atlas (TCGA) whole-genome sequencing data (WGS) from liver tumor-normal pairs. Multiple hepatitis B virus (HBV) integration sites were identified in TCGA liver samples and confirmed by HGT-ID using the RNA-Seq data from the matched liver pairs. This shows the applicability of the method in both the data types and cross-validation of the HGT events in liver samples. We also processed 220 breast tumor WGS data through the workflow; however, there were no HGT events detected in those samples. CONCLUSIONS: HGT-ID is a novel computational workflow to detect the integration of viruses in the human genome using the sequencing data. It is fast and accurate with functions such as prioritization, annotation, visualization and primer design for future validation of HGTs. The HGT-ID workflow is released under the MIT License and available at http://kalarikrlab.org/Software/HGT-ID.html .


Subject(s)
Gene Transfer, Horizontal/genetics , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Virus Integration/genetics , Algorithms , Base Sequence , Breast Neoplasms/virology , Cell Line, Tumor , Computer Simulation , Female , Humans , ROC Curve , Software , Whole Genome Sequencing , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...